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Lecture 14 : The fluctuation : dissipation theorem I .

Systems close to equilibrium E) Linear response regime.

For a dynamical variable XIt) = X(t; M) that linearly couples
m

to
an external force f(t) in the initial conditions

Hamiltonian , i
.

e
.

H= H-fX ,
we found that

↳ = 4H =[
Onsager regression hypothesis Fluctuation - dissipation theorem .

The fluctuation - dissipation theorem is often formulated in frequency
space.

Spectral analysis of fluctuations
Recall that we defined the autocorrelation function as
[(t) = ((X(0)(X(t)) =AimX(t)NXl

We introduce a quantity called the spectral density defined as

S(0) = liv+(2) (
Here the windowed Fourier transform is given by :T

EX(r) = Sat ecot SX(t) .
-Th

Here we take @X(t)-IR ET X*w) = OX+ (-w) -
We ask ourselves two questions : (i) Does the limit (P) exist

?

(ii) How does S(c) relate to Cilt) ?



②
Let us evaluate: it T2

PETIwiK) =Sat"fdt" <OXOXIt)eiwTh T -Tm + 12 -t

= Jdt" (at"Stit')eiwt)/Cittlt
-Th -Thi

+ 12 - It)/z- (T- ADS()evt

Therefore , Slr) = timJdt)(
=Linit t(T

Lebesque
dominated = Steitt
converge(
theorem -

Therefore , the limit exists and it turns out that Slu) is the Fourier

transform of GCt) . This is called the Wiener - Khinchin theorem-

This is all wehave to say about the fluctuation part of the fluctuation
dissipation theorem .

What about the dissipative part in Fourier space?

Properties of response function X(t)
We restrict our attentionto cases where flt) and XCt) are real.

By the definition
+ 9

*A) = (X) +JdtXtf(t)Off) it means that
X (t,t) = Xlt-t') is real as well . What does this mean for the

Fourier transform ?



③
We have Ecol=

*

get X() eit and wer write : Y(c) = Fi(w) + i* "(n)
where Filw) = Re[Y(r)] and Y" (w) = Im[Y(w)] .

· Imaginary part can bewritten as
-

&" (w) = -EE)-**(w)] =-dtX()[int-e- iv+]
↑

X(t) =y * (t)

=-Tiwt[yH)-X
-

not invariant under = X"(w) arises from
- - -t

dissipative processes.

Furthermore
, we observe that X"(-w) = - X "(w) .

Since

· Real part can be written as
-

Y'(w) = ziwt[X(t) +X(-t))
inechanical"

Furthermore
, Y'l - v) =x (w) ·

For this reason Y'Iw) is called the reactive part of the response
function

~

Y "(w) is called the dissipative part of the
response function.

This becomes especially clear in the context of the fluctuation-
dissipation theorem .

t > 0

X(t) = [-PCH)
+

x(t) = 20Cilt) +o to

X(t) - X(- z) =
- BG(t) Xt



④

The Fourier transform of XIt)-X(t) is 2:4"(w) ·
and of C) is iwS(o).

#Sco Fluctuation-disation
herse

In last Lecture we considered the absorbed power and have

shown that LHS relates to dissipation
In the quantum-mechanical derivation is a bit more technical

Commutators
, imaginary-time formalism) and we find

-

5(w) = +2 [mz(w) +1])

Mp(w) is the Bose-Einstein distribution -

Remark : Sometimes you see in the Literature the FD theorem with

an opposite sign as the above. This stems from a different definition
of the Fourier transform
Causality and the Kramers-Krozig relations

Recall that we impose the causality condition XIt) =0 for the
We can compute XIt) from its Fourier transform :

X()=-int l

furthermore
,
we take /XIt) <

(Finite force must give afiniterouse



&E contributiona ⑤
fr
+-

We can compute the integral (1) by closing the sentour in the upper
half complex plane . Since X(E) = 0 for to we conclude that for

the analytic continuation (2) ; z = w+ in ,
there are no poles

for20 : In other words Ylwtin) is analytic for 30.

-

Because X(z) is analytic we can use the following trick :Im(z)

= GruTrevCe

-
>T Met

↑
Rie

-

Because X(z) is analytic in the upper half plane and the contour
G'does not enclose any poles , we find :

-= o e.g. Jordan's Lemma.

Now takeElo
,
then

--

·Jawli
-a

Cz
.

~
we parametrize using z = Worke

it



⑥

·de
-

=/et[Y(wo) + O(e)] -- in [lwo) foreto
Taylor

=> Tool= w

We conclude that :

↑ "(vol=Pl Kramers-Kronig
relations#
are not independentDo

↑ "(w) =- Y '(w) and Y"(w)

Thegeneralized Langevin equation
One of the most familiar non-equilibrium phenemeron is that of friction.
Consider a particle moving in a fluid :

- The fluid exerts a drag force

faras Garag = -ye on the particle

U : friction constant .

Here
,
we want to provide a simple model for the friction constant y

We consider a "tagged" particle coupled to a
bath#described by variable e



⑪
We consider the following Hamiltonian :
H = Hp(x) - xf + Hy(y ,.. . . . yx) .

↑ ↓
bath Hamiltonian .Oscillator Hamiltonian

of tagged particle

We assume a linear coupling between bath and particle :

f= Yi GeR i = 1, ..., N .

2 : primary degree of freedom

Ey : S : secondary degrees of freedom.

Ho = Emi + V(x) -

Hb : collection of harmonic oscillators .
Let us denote fp(t) as the force provided by a pure bath.
The presence of the tagged particle changes this behaviour within
Linear response theory as :

f(z) = fo(t) + ) Xy(t - t(ve(t)

Co

and we know from the fluctuation-dissipation theorem that :

tyt'Xb(t-t)) = 3-Bt)Gb(t-t) tct'

where Giblt)= [5f(0) if (t) > =&j (Gy : (0) Gyj(t)]b



⑧
Now we find the following equation ofmotion for the primary variable:

+

micht) =- + fb(t)+JdtXb(t-tclt)
Y ↑

nonlocal term
random or because tagged particle

fluctuatingfee influences bath degrees
causality of freedom.

t

- + fblt)+dtXblttl
=- +fbk)B( Cplttl
f(t)-pacpt-t(t) · Generaliea

Langerin equation.

where V()=(x)-BCb1o)12 Potential of mean force
1bath-averaged potential

5f(t) = fb(t)-BGp(t)x(o) - ! on primary coordinate)

Friction is a result of
fluctuating forces&

"Second fluctuation-dissipation theorem
"

The model describes (1D) Brownian motion .

·
Suppose we approximate It"Cb(t)) ic (t- t) ci(t)(dtcib(t)

(Markovian approximation) andNo
neglecting memory.



⑨
In the Ma-hovian approximation :

mo(t) = fb(t) = jo(t) hangin equation .

with v(t) = cit) .
(More details on

It turns out that : U
= B((Of()5f(o)) · tutorials) .

Tagged particle experience random forces that buffet the particle
about - Particle gains kinetic energy that is removed by frictional
dissipation.

Within Langevin equation , we find (vdrit)) = (vi) efolmt
.

However if we include the effects of memory , we find
Coult)) ~7-31 Long-time fails

Measured in experimentI
(it)] =2Dt- ....

↑
Diffusion coefficient


